بایگانی برچسب: s

شناخت حروف توسط شبکه های عصبی

تو این مطلب می خوایم بصورت عملی از شبکه های عصبی استفاده کنیم! واقعا خیلی جالبه می خوایم به کامپیوتر سه تا حرف الفبای انگلیسی رو یاد بدیم.
نکته ی جالب تر این هست که حتی به کامپیوتر نمی گیم هر کدوم از حرف ها چی هستن! فقط بهش می گیم که این ها سه حرف مختلف هستند! و کامپیوتر خودش تشخیص می ده هر کدوم متعلق به کدوم گروه هست! به این نوع طبقه بندی اصطلاحا Unsupervised میگن.

Question level 3 وااای مگه می شه؟؟؟ من فکر می کردم باید لااقل توی مثال هامون به کامپیوتر بگیم مثلا این A هست و این B هست!
Answer ” خوب اون هم نوعی یادگیری هست که بهش اصطلاحا Supervised می گن. اما توی این مثال حالت جالب تر یعنی Unsupervised رو می خوایم بررسی کنیم. به این صورت که فقط به کامپیوتر می گیم ۳ دسته وجود داره و براش چندین مثال می زنیم و خودش مثال ها رو توی ۳ دسته قرار می ده! در نهایت ما مثلا می تونیم بگیم همه ی مثال هایی که در دسته ی دوم قرار گرفتن A هستند.
شاید جالب باشه بدونید گوگل هم برای دسته بندی اطلاعات از همچین روشی استفاده می کنه! البته کمی پیشرفته تر. مثلا ۱۰۰ متن اقتصادی و ۱۰۰ متن ورزشی به کامپیوتر میده و از کامپیوتر می خواد اونها رو به ۲ بخش تقسیم بندی بکنه! ورودی لغت های اون متن ها هستند. “
Question level 3 وای، سیاوش باورم نمیشه!
Question level 2 من هم همینطور. مگه می شه کامپیوتر خودش دسته بندی کنه! لطفا ادامه بدید.
Answer ” اگه اجازه بدید می خوام همین کار رو انجام بدم! “

ابزار مورد نیاز

خوب! برای این که شروع کنیم به چند مورد نیاز داریم:
  1. در مورد هوش مصنوعی و شبکه های عصبی یکم اطلاعات داشته باشید. در صورتی که آشنایی ندارید می تونید مقدمه ای بر هوش مصنوعی و مقدمه ای بر شبکه های عصبی رو مطالعه کنید.
  2. برنامه ای برای تولید الگو که ورودی شبکه ی عصبی ما خواهد بود. این برنامرو میتونید از اینجا تهیه کنید.
  3. نرم افزار JOONE Editor. عبارت JOONE مخفف Java Object Oriented Neural Engine هست. که یک ابزار قدرت مند برای بوجود آوردن و آموزش انواع شبکه های عصبی در Java هست. توی این آموزش ما از ویرایشگر این ابزار استفاده می کنیم که محیطی گرافیکی برای تولید شبکه های عصبی داره و کار با اون بسیار ساده هست. این ابزار از اینجا قابل دریافت هست. بدیهیه که برای نصب این ابزار ابتدا باید جاوا روی کامپیوتر شما نصب باشه.
  4. کمی پشتکار و حوصله.
Question level 2 ای بابا! من جاوا رو کامپیوترم نصب نیست! یعنی باید برم سیدیشو بخرم؟؟؟
Answer ” فکر کنم شما علاوه بر جاوا مورد ۴ رو هم نداشته باشی… در صورتی که اینترنتت پر سرعته می تونی از اینترنت هم J2SE رو دانلود کنی. “
Question level 2 آره اینترنتم ADSL هست!.

ساخت الگوها

حالا می خوایم یک سری الگو تولید کنیم. الگو همون مثال هایی هست که گفتیم برای کامپیوتر می زنیم تا بتونه یاد بگیره.
برای این کار از برنامه ای که در شماره ی ۲ بخش قبل معرفی کردم استفاده می کنیم. این برنامه خیلی ساده کار می کنه و فقط الگو ها رو از حالت تصویری به ۰ و ۱ تبدیل می کنه.

Question level 4 سیاوش می تونی توضیح بدی چطور این کار انجام میشه؟
Answer ” بله حتما! اول تصویر رو به یک ماتریس ۸ در ۸ تقسیم می کنه. یعنی ۶۴ قسمت. وقتی دکمه ی سمت چپ ماوس پایینه در صورتی که ماوس از هر کدوم از اون ۶۴ بخش رد بشه اون بخش رو داخل ماتریس علامت گذاری می کنه (مقدار اون قسمت رو True می کنه). وقتی دکمه ی Learn زده می شه برنامه مقدار تمام قسمت ها رو از بالا به پایین داخل یک فایل ذخیره می کنه. مقدار هر قسمت می تونه ۰ یا False و ۱ یا True باشه. “

در صورتی که سورس این برنامرو خواستید کافیه توی بخش نظرات بگید تا براتون میل کنم.
کار با این برنامه خیلی آسون هست همونطور که توی شکل مشخصه.

کافیه الگویی که دوست دارید رو داخل فضای سفید بکشید و دکمه ی Learn رو بزنید. Textbox پایینی برای تغییر دادن آدرس فایلی هست که اطلاعات توی اون ذخیره میشه. و Textbox بالایی برای اینه که بگید این الگو چه حرفی هست که توی این مطلب نیازی به پر کردن اون نیست چون ما بحثمون یادگیری Unsupervised هست. توی مطالب بعدی برای یادگیری Supervised به این فیلد نیاز خواهیم داشت.
خوب من برای اینکه مثال پیچیده نشه ۳ حرف رو می خوام به کامپیوتر یاد بدم. A و C و Z!
برای این کار برای هر کدوم از حروف چهار مثال وارد می کنم و دکمه ی Learn رو می زنم. توی شکل زیر می تونید هر ۱۲ الگو رو ببینید.

فایل خروجی مربوط به این الگوهای مثال از اینجا قابل دریافت هست.همونطور که می بینید هر ردیف به نظر من و شما عین هم هستند. اما اگر کمی بیشتر دقت کنیم می بینیم جای مربع های مشکی با هم فرق دارن. به نظر شما کامپیوتر هم خواهد فهمید هر ردیف نشاندهنده ی یک حرف مجزا هست؟

تشکیل شبکه ی عصبی

خوب! حالا می خواهیم ساختار شبکه ی عصبی رو طراحی کنیم. برای این کار از JOONE Editor کمک می گیریم.
صفحه ی اول این نرم افزار به این شکل هست:

توی این مثال ما از یک لایه ی ورودی خطی ۶۴ نورونی استفاده می کنیم که هر نورون یک قسمت از ماتریسی که در بخش قبل گفتیم رو به عنوان ورودی می گیره. به عنوان خروجی هم از یک لایه ی ۳ نورونی WinnerTakeAll استفاده می کنیم. در این نوع خروجی یکی از نورون ها ۱ و بقیه ۰ خواهند بود که برای تقسیم بندی بسیار مناسب هست.

ایجاد لایه ی FileInput

برای شروع ابتدا یک لایه ی FileInput ایجاد می کنیم. توسط این ابزار می تونیم یک فایل رو به عنوان ورودی به شبکه بدیم.
روی FileInput کلیک راست کرده و در Properties اون فایل درست شده در مرحله ی قبلی رو به عنوان fileName انتخاب می کنیم و به عنوان Advanced Column Selector مقدار ۱-۶۴ رو وارد می کنیم تا برنامه متوجه بشه باید از ستون های ۱ تا ۶۴ به عنوان ورودی استفاده کنه.

ایجاد یک لایه ی خطی

مرحله ی بعدی ایجاد یک Linear Layer یا لایه ی خطی هست. بعد از ایجاد این لایه Properties اون باید به شکل زیر باشه:

همونطور که می بینید تعداد ردیف ها ۶۴ مقداردهی شده که دلیلش این هست که ۶۴ ورودی داریم.
حالا با انتخاب FileInput و کشیدن نقطه ی آبی رنگ سمت راست اون روی Linear Layer خروجی FileInput یعنی اطلاعات فایل رو به عنوان ورودی Linear Layer انتخاب می کنیم.
تا این لحظه ما یک لایه ی ۶۴ نورونه داریم که ورودی اون مقادیر مثال های تولید شده در مرحله ی قبل هست.

ایجاد لایه ی WinnerTakeAll

خوب توی این مرحله لایه ی خروجی که یک لایه ی WinnerTakeAll هست رو تولید می کنیم. Properties این لایه باید به شکل زیر تغییر پیدا کنه تا اطمینان پیدا کنیم الگوها به سه دسته تقسیم میشن:

حالا باید بین لایه ی خطی و لایه ی WinnerTakeAll ارتباط برقرار کنیم. برای این کار باید از Kohonen Synapse استفاده کنیم و Full Synapse جواب نخواهد داد. پس روی دکمه ی Kohonen Synapse کلیک کرده و بین لایه ی خطی و لایه ی WinnerTakeAll ارتباط ایجاد می کنیم.
در آموزش های بعدی فرق انواع سیناپس ها رو بررسی خواهیم کرد.

آموزش شبکه

تا این لحظه شبکه باید به این شکل باشه. حالا می تونیم آموزش شبکرو شروع کنیم. برای این کار در منوی Tools بخش Control Panel رو انتخاب می کنیم. و در صفحه ی جدید learningRating و epochs و training pattern و learning رو به شکل زیر تغییر می دیم.

epochs تعداد دفعاتی که مرحله ی آموزش تکرار میشرو تعیین می کنه.
learningRate ضریبی هست که در یادگیری از اون استفاده می شه. بزرگ بودن اون باعث میشه میزان تغییر وزن نورون ها در هر مرحله بیشتر بشه و سرعت رسیدن به حالت مطلوب رو زیاد می کنه اما اگر مقدار اون خیلی زیاد شه شبکه واگرا خواهد شد.
training patterns هم تعداد الگو هایی که برای آموزش استفاده می شن رو نشون می ده که در این مثال ۱۲ عدد بود.
بعد از اینکه تمام تغییرات رو ایجاد کردیم دکمه ی Run رو می زنیم و منتظر می شیم تا ۱۰۰۰۰ بار عملیات یادگیری انجام بشه.

تست کردن شبکه

تبریک می گم! شما الان به کامپیوتر سه حرف A و C و Z رو یاد دادید!
اما خوب حالا باید ببینید کامپیوتر واقعا یاد گرفته یا نه.
برای این کار از یک لایه ی FileOutput استفاده می کنیم تا خروجی شبکرو داخل یک فایل ذخیره کنیم.
Properties لایه ی FileOutput باید بصورت زیر باشه:

همونطور که می بینید به عنوان fileName مقدار c:\output.txt رو دادیم. یعنی خروجی شبکه در این فایل ذخیره میشه.
حالا کافیه لایه ی WinnerTakeAll رو به لایه ی FileOutput متصل کنیم.
بعد از متصل کردن این دو لایه شکل کلی باید بصورت زیر باشه:

برای اینکه فایل خروجی ساخته بشه باید یک بار این شبکرو اجرا کنیم. برای این کار مجددا در منوی Tools بخش Control Panel رو انتخاب می کنیم و در اون learning رو False و epochs رو ۱ می کنیم تا شبکه فقط یک بار اجرا شه. پس از تغییرات این صفحه باید به شکل زیر باشه:

حالا با توجه به اینکه من اول چهار مثال A رو وارد کردم و بعد به ترتیب چهار مثال C و چهار مثال Z رو ببینیم خروجی این شبکه به چه شکل شده.
باور کردنی نیست! خروجی به این شکل در اومده:

  1. ۱٫۰;۰٫۰;۰٫۰
  2. ۱٫۰;۰٫۰;۰٫۰
  3. ۱٫۰;۰٫۰;۰٫۰
  4. ۱٫۰;۰٫۰;۰٫۰
  5. ۰٫۰;۱٫۰;۰٫۰
  6. ۰٫۰;۱٫۰;۰٫۰
  7. ۰٫۰;۱٫۰;۰٫۰
  8. ۰٫۰;۱٫۰;۰٫۰
  9. ۰٫۰;۰٫۰;۱٫۰
  10. ۰٫۰;۰٫۰;۱٫۰
  11. ۰٫۰;۰٫۰;۱٫۰
  12. ۰٫۰;۰٫۰;۱٫۰

همونطور که می بینید ۴ خط اول که مربوط به A هستن ستون اولشون ۱ هست و در چهار خط دوم ستون دوم و در چهار خط سوم ستون سوم!
این یعنی کامپیوتر بدون اینکه کسی به اون بگه کدوم مثال ها کدوم حرف هست خودش فهمیده و اون ها رو دسته بندی کرده.

Question level 1 ببخشید. خوب چون پشت هم دادید مثال هر حرف رو اینطوری نشده؟
Answer ” نه! کامپیوتر که نمی دونسته من می خوام مثال های هر حرف رو پشت سر هم بدم! من برای راحتی خودم این کار رو کردم. شما می تونی ورودی هاتو غیر مرتب بدی! “
Question level 2 دلیل خاصی داره که در A ستون اول ۱ هست و …
Answer ” نه! ممکن بود برای A ستون دوم ۱ بشه و یا هر حالت دیگه. شما اگر امتحان کنید ممکنه تفاوت پیدا کنه. اما مهم اینه در تمام A ها یک ستون خاص مقدارش ۱ و بقیه ی ستون ها مقدارشون صفر می شه. پس یعنی کامپیوتر تونسته به خوبی تقسیم بندی کنه. “

امتحان با مثال های جدید

حالا می خوایم شبکرو با سه مثال جدید تست کنیم که در مثال های آموزشی نبوده! برای این کار من با استفاده از برنامه ی تولید الگو ۳ مثال جدید درست می کنم و به عنوان فایل ورودی در شبکه فایل جدید رو انتخاب می کنم.
توی شکل زیر سه مثال جدید رو می تونید ببینید:

برای جذابیت علاوه بر این سه مثال ۲ مثال دیگه هم که احتمالا برای یک موجود بد خط هست گذاشتم!

فایل خروجی این مثال ها از اینجا قابل دریافت هست.
به نظر شما این دو تا چه حرف هایی هستن؟

Question level 2 اییییووول این دو تا مثال آخریا که کپ خط علیههه!
Question level 4 علی؟؟؟
Question level 2 آره برادرمه!
Question level 4 چه خوب که برادرته.
Question level 2 آره. چپیه Zه و راستیه هم C هست.

خوب حالا بگذارید ببینیم کامپیوتر چه جوابی می ده. با توجه به اینکه اول مثال C بعد مثال Z و بعد مثال A رو وارد کردم. دو مثال بعدی هم به ترتیب مثال بد خط سمت چپ و مثال بد خط سمت راست هستند. و اما جواب:

  1. ۰٫۰;۱٫۰;۰٫۰
  2. ۰٫۰;۰٫۰;۱٫۰
  3. ۱٫۰;۰٫۰;۰٫۰
  4. ۰٫۰;۰٫۰;۱٫۰
  5. ۰٫۰;۱٫۰;۰٫۰

کامپیوتر سه مورد اول رو به خوبی C و Z و A تشخیص داده. و دو مورد بد خط هم به ترتیب از چپ به راست Z و C تشخیص داده!
حتی برای انسان هم سخته فهمیدن اینکه مورد های چهارم و پنجم چی هستند اما اگر خوب دقت کنید می بینید به مواردی که کامپیوتر خروجی داده نزدیک تر هستند.

Question level 2 کجاش سخته! من که گفتم کدوم چیه!
Answer ” خوب همه مثل شما یه برادر بد خط ندارن. “

نتیجه گیری

فکر کنم خودتون نتیجه بگیرید بهتر باشه…

Question level 1 به نظر من کامپیوتر خیلی با شعوره!
Answer ” کامپیوتر شعور نداره! اما ما سعی کردیم طریقه ی عملکرد مغز رو به صورت خیلی ابتدایی و به ساده ترین نحو توش شبیه سازی کنیم! “

تو مطلب امروز دیدیم که کامپیوتر تونست بدون اینکه ما براش مثال هایی بزنیم و بگیم هر کدوم چه حرفی هستند و فقط با دادن تعداد دسته ها، مثال ها رو به سه دسته همونطوری که انسان ها تقسیم می کنند تقسیم کنه. همونطور که گفتیم به این نوع دسته بندی، دسته بندی Unsupervised میگن. در مباحث بعدی مثال هایی از یادگیری و دسته بندی Supervised می زنیم تا با اون نوع هم آشنا شید.
این دفعه دیگه جدا زیاد صحبت کردم بس که موضوع جالب بود.
سلامت باشید.

لینک های داخلی

لینک های خارجی

References

مقدمه ای بر شبکه های عصبی

در مقدمه ای به هوش مصنوعی سه بخش اساسی در هوش مصنوعی رو بطور خیلی خلاصه گفتیم! حالا توی این بخش می خوایم بطور خلاصه به شبکه های عصبی بپردازیم.

Question level 2 ببخشید؟
Answer ” آخه من که هنوز چیزی نگفتم که می خوای سوال کنی! سوالت چیه حالا؟ “
Question level 2 من یادم رفت اون سه بخش اساسی چی بودن. می شه یک بار دیگه بگید؟
Answer ” سه بخش عبارتند از:

  • شبکه های عصبی یا Neural Network
  • الگوریتم ژنتیک یا Genetic Algorithm
  • منطق فازی یا Fuzzy Logic

البته به این راحتی نمیشه هوش مصنوعی رو دسته بندی کرد. منظورمون از این دسته بندی این هست که این روز ها روی این ۳ مبحث بیشتر بحث می شه. “

خوب کسی یادش هست شبکه های عصبی هدف و خاصیت هاش چی بود؟

Question level 3 من تا جایی که یادمه در شبکه های عصبی مصنوعی یا Artificial Neural Networks محققان قصد داشتند که طریقه ی عملکرد مغز انسان در به خاطر سپردن اطلاعات و یادگیری رو شبیه سازی کنند.
محققان توی تحقیق هاشون دیدن که مغز انسان از تعداد خیلی زیادی عصب یا Neuron تشکیل شده که هر کدوم از این عصب ها به تعداد دیگه ای عصب متصل هستن و به همدیگه سیگنال هایی رو میفرستند. در بعضی شرایط عصب ها سیگنال رو از خودشون عبور میدن و اون رو تقویت می کنند و در بعضی شرایط هم از خودشون عبور نمیدن. با اینکه هر نورون ساختار خیلی پیچیده ای نداره مجموعه ی این نورون ها یک شبکه ی بسیار پیچیدرو تشکیل میده که قابلیت یادگیری و ذخیره کردن اطلاعات و تحلیل اون ها رو داره!
Answer ” بسیار عالی! خیلی خوشحالم که خوب حرف های جلسه ی قبل یادت مونده! همونطوری که دوستمون گفتن مغز انسان تعداد خیلی زیادی نورون داره که حدودا ۱۰ به توان ۱۲ تا می شه. ولی هر نورون حدودا فقط به ۱۰ به توان ۳ نورون دیگه وصل هست که این نشون می ده ارتباطات بین این نورون ها انتخاب شده هست!
خوب حالا کسی یادش هست که محققا به چه نحوی سعی کردند شبکه های عصبی رو شبیه سازی کنند؟ “
Question level 4 تا جایی که من یادم هست گفتید اول نورون های مصنوعی رو تعریف می کنند به این صورت که هر نورون یه تعداد ورودی و خروجی داره و یک بایاس و هر ورودی هم یک وزن (Weight) داره.
بعد این نورون ها رو توی چند لایه قرار می دن که به لایه ی اول لایه ی ورودی و به آخرین لایه لایه ی خروجی و به بقیه ی لایه ها لایه ی مخفی یا میانی میگن. تعداد نورون های لایه ی ورودی و خروجی بسته به تعداد ورودی و خروجی تعیین می شن اما تعداد لایه های میانی و نورون های هر لایه می تونه هر مقداری باشه که البته هر مقداری از اون نتیجه ی مطلوبی رو به ما نمیده و باید انتخاب شده باشه.

عالیه! ممنونم از همکاریتون!
البته نورون ها فقط از بخش هایی که شما گفتید تشکیل نمی شن و ممکن هست بر حسب نوع شبکه پارامتر های دیگری هم داشته باشن که بعدا بهشون اشاره می کنیم.

پرسپترون (Perceptron)

تا اینجا از دور به ساختار نورون ها و شبکه ی عصبی نگاه کردیم. حالا می خوایم آسون ترین شکل نورون رو در ساده ترین حالت بررسی کنیم.

پرسپترون

پرسپترون یا Perceptron ساده ترین نوع مدلسازی نورون هست. از اونجایی که بررسی چند پرسپترون در لایه های مختلف کمی پیچیده هست برای شروع به بررسی یک عدد پرسپترون می پردازیم.
پرسپترون دارای یک سری ورودی خارجی. یک ورودی داخلی به نام بایاس (bias). یک threshold و یک خروجی هست. که در شکل سمت چپ می تونید اون رو ببینید!

هر پرسپترون نشاندهنده و معرف یک نورون هست. ورودی پرسپترون ها معمولا از جنس boolean هست اما در کل می تونه هر عددی باشه ولی خروجی همیشه یک boolean هست!

Question level 1 ببخشید! منظورتون از boolean چی هست دقیقا؟
Answer ” مثلا وقتی می گیم خروجی یک پرسپترون همیشه boolean یا بولین هست یعنی خروجی می تونه دو مقدار ۱ و ۰ داشته باشه! که ۱ معرف درست یا true و ۰ معرف غلط یا false هست. “
Question level 2 پس یعنی ورودی پرسپترون می تونه هر مقداری باشه اما معمولا یا ۰ یا ۱ هست و خروجی اون ۱۰۰٪ ۰ یا ۱ هست. درسته؟
Answer ” بله! کاملا درسته… “

در صورتی که خروجی یک پرسپترون یک باشه به اون پرسپترون می گیم پرسپترون فعال یا activated.
تمام ورودی ها از جمله بایاس دارای یک وزن هستند که این وزن ضرب در مقدار ورودی می شه. معمولا وزن بایاس برابر ۱ هست.
یکی از مهمترین عوامل هر نورون تابع فعال کننده یا Activation function اون نورون هست. تابع فعال کننده تعیین می کنه که با توجه به ورودی های نورون خروجی اون به چه شکل باشه. در پرسپترون ها ما یکی از ساده ترین توابع فعال کنندرو داریم. این تابع تمام ورودی های پرسپترون رو بعد از ضرب کردن اون ها در وزنشون با هم جمع می کنه. در صورتی که جمع اونا از threshold بیشتر یا مساوی بود خروجی ۱ خواهد بود یعنی پرسپترون فعال خواهد شد و در غیر این صورت پرسپترون غیر فعال خواهد شد. پس در صورتی که شرط زیر برقرار باشه یک پرسپترون فعال خواهیم داشت:

در اصل threshold مثل یک دیوار می مونه. اگر سیگنال انرژی کافی برای رد شدن از دیوار رو داشته باشه از روی اون عبور می کنه. در غیر این صورت پشت دیوار می مونه.

یادگیری در پرسپترون

از خصیصه های اصلی پرسپترون ها قابلیت یادگیری یا train شدن هست. این یادگیری در پرسپترون ها supervised هست. به این مفهوم که ما باید تعدادی ورودی به همراه خروجی صحیح داشته باشیم تا پرسپترون بتونه اون رو تقلید کنه.
یادگیری پرسپترون ها با این صورت هست:

  1. یک خروجی تولید می کنند.
  2. خروجی رو با خروجی که باد می بوده مقایسه می کنند.
  3. خودشون رو کمی تنظیم می کنند تا به خروجی نزدیک تر بشن.

بعد از تکرار شدن این مراحل به تعداد کافی پرسپترون اصتلاحا به رفتار صحیح همگرا یا converge میشه!
به این روش یادگیری delta rule یا قانون دلتا می گن. در این روش یادگیری تغییر وزن در هر مرحله به صورت زیر محاسبه می شه:

که دلتا در اون تفاوت خروجی مورد نظر و خروجی نورون بوده و xi مقدار ورودی هست.

Question level 3 پس یعنی مقدار جدید وزن هر نورون می شه تفاوت خروجی مورد نظر و خروجی نورون ضرب در مقدار ورودی اون نورون؟
Answer ” به جز قسمت اول بقیه ی حرفت درسته. این مقدار وزن جدید نیست بلکه به وزن قبلی اضافه میشه! “
Question level 3 پس یعنی مقداری که بدست میاد میزان تغییرات در وزن قبلی هست! الآن متوجه شدم.
Answer ” بسیار عالی. “

مثال تابع OR

یک پرسپترون قابلیت جدا کردن فضا به دو بخش رو داره. پس ما با یک پرسپترون فقط می تونیم توابعی رو به درستی بدست بیاریم که در فضا بتونیم قسمت های مثبت خروجی و منفی اون رو به دو قسمت تقسیم کنیم.
در شکل زیر تونستیم به یک پرسپترون تابع OR رو یاد بدیم.

دو محور دو ورودی پرسپترون هستند. همونطور که می بینید پرسپترون فضا رو به دو قسمت مجزا کرده به این صورت که فضای بالای خط سبز رنگ خروجی + یا ۱ خواهند داشت و فضای پایین خط خروجی – یا ۰. پس در صورتی که ورودی ها ۱ و ۱ یا ۰ و ۱ یا ۱ و ۰ باشند خروجی ما + یا ۱ خواهد بود و در صورتی که ورودی ها ۰ و ۰ باشند خروجی – یا – خواهد بود! پس تونستیم با یک پرسپترون ساده تابع OR رو بخوبی در بیاریم.

Question level 1 ببخشید معادله ی این خط رو ما بهش دادیم؟
Answer ” نه! اگر معادله ی خط رو ما می دادیم که دیگه یادگیری در کار نبود! ما برای پرسپترون چندین بار مثال زدیم و پروسه ی یادگیری که بالا توضیح دادم به همون تعداد دفعه اجرا شده. یعنی مثلا دو ورودی رو ۱ دادیم و گفتیم خروجی باید ۱ باشه. بعد یک ورودی ۱ و یک ورودی ۰ دادیم و گفتیم خروجی باید ۱ باشه و بعد دو ورودی ۰ دادیم و گفتیم خروجی باید – باشه! و همین کار رو چندین بار تکرار کردیم. و پرسپترون با استفاده از تابع یادگیری فضا رو به دو قسمت مثبت و منفی تقسیم کرده. “
Question level 3 خوب کل حالات OR ۴ حالت بیشتر نمیشن! اینطور که شما میگید ما بیشتر از ۴ مثال برای پرسپترون می زنیم. یعنی ممکنه چندین بار یک مثال رو برای پرسپترون بزنیم؟
Answer ” بله! برای اینکه پرسپترون بهتر یاد بگیره ممکن هست مثلا ورودی ۱ و ۱ با جواب ۱ رو چندین بار برای اون مثال بزنیم تا این ورودی ها به همراه خروجی چندین بار داخل تابع یادگیری برن و اطمینان پیدا کنیم پرسپترون همگرا شده! “
Question level 2 من نمی فهمم! خوب این چه کاریه. می تونستیم جای اینکه ۱۰۰ تا مثال بزنیم از اول ۴ تا حالت رو تعریف کنیم! اونطوری نیازی به همگرایی و این جور چیزا هم نبود!
Answer ” در مورد این مثال که ۴ حالت بیشتر نیست درست میگید! اما این فقط یک مثال ساده هست برای اینکه مطلب جا بیفته! برای کار های سخت تر مثل شناسایی دست خط تعداد حالات ۴ عدد نیست! نکته ی اصلی این هست که در شبکه های عصبی ما یادگیری داریم! مثلا می تونیم با چند بار نوشتن حرف ب و چند بار نوشتن حرف ج به کامپیوتر یاد بدیم این دو حرف با هم فرق دارند و اولی ب و دومی ج هست! در جلسات بعدی احتمالا همچین مثالی رو نشونتون خواهم داد. “
Question level 3 یک سوال دیگه! پس با یک پرسپترون ما می تونیم تابع AND رو هم در بیاریم! درسته؟
Answer ” کاملا درسته! چون تابع AND هم قابل تقسیم به دو بخش در فضا هست. “
Question level 2 XOR چطور؟
Answer ” نه! XOR رو نمیشه با یک پرسپترون در آورد! چون XOR با تقسیم فضا به دو بخش مثبت و منفی در نمیاد.
در XOR ورودی و خروجی به این صورته:

  • به ازای ۰ و ۰ خروجی ۰ داریم.
  • به ازای ۰ و ۱ خروجی ۱ داریم.
  • به ازای ۱ و ۰ خروجی ۱ داریم.
  • به ازای ۱ و ۱ خروجی ۰ داریم.

یعنی با توجه به شکل آخر بالا سمت راست و پایین سمت چپ خروجی باید + بشه و در بالا سمت چپ و پایین سمت راست باید منفی بشه! ما نمی تونیم هیچ خط راستی رسم کنیم که فضا رو به این صورت تقسیم کنه پس هیچ وقت پرسپترون همگرا نخواهد شد! “

پس فهمیدیم یک پرسپترو محدود هست. اما با ترکیب همین پرسپترون های خیلی محدود در لایه های مختلف می تونیم توابعی مثل XOR و توابع خیلی پیچیده تر از اون رو هم در بیاریم.
انشاالله در جلسات بعدی مثال های بیشتری در ارتباط با شبکه های عصبی خواهیم دید. دیگه خیلی حرف زدم!
در صورتی که سوالی در ارتباط با هوش مصنوعی داشتید می تونید اون رو در انجمن تخصصی هوش مصنوعی مطرح کنید.
موفق باشید.

لینک های داخلی

لینک های خارجی

References